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Abstract—Semiconductor devices are integrated from a limited
number of fundamental building blocks. Important structures
like ohmic contacts, band-to-band tunneling barriers or quantum
wells are derived from metal-semiconductor interfaces, doping
transitions or heterojunctions. Current injection across these
material intersections is reduced due to a change in the effective
mass of the charge carriers. Thus, mass discontinuities need
to be carefully modeled in device simulations. In this tutorial
brief, we give an overview of possible finite difference schemes
gathering information that might be difficult to encounter in
the original literature. Different discretized device Hamiltonians
are used to compute the transmission coefficient with the help of
non-equilibrium Green’s functions. Two approaches are validated
by comparing numerical and analytical transmission values at
mass discontinuities in planar bands and potential barriers. We
show that a smooth material transition leads to an improved
transmission coefficient.

Index Terms—Heterojunction, NEGF, Effective mass approxi-
mation, Finite difference method, Transmission coefficient

I. INTRODUCTION

Technology computer-aided design (TCAD) is an essential
tool when developing semiconductor manufacturing platforms
for integrated electronic circuits. In particular, the virtual
design of electron devices on a computer allows both, architec-
ture optimization for manufacturing (Design Technology Co-
Optimization - DTCO) and the derivation of compact models
for circuit simulation (Electronic Design Automation - EDA).
Device TCAD is based on fundamental transport equations
of charge carriers in semiconductors. Semiconductor models
are hierarchical and range from macroscopic semi-classical to
microscopic quantum equations. For open quantum systems,
like nanoscale electron devices, the density matrix formulation
of quantum mechanics has certain advantages since it allows
an easier implementation of transparent boundary conditions
and of scattering between charge carriers and phonons.

An approach to compute the device density matrix are
non-equilibrium Green’s functions (NEGFs) [1]. In essence,
NEGFs treat the contact eigenstates as incoherent device ex-
citations and transform each into a corresponding device wave
function. Recent applications of NEGFs include the optimiza-
tion of heterojunction tunnel field-effect transistors (FETs)
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with tunneling along the gate field [2]–[4], electrostatically
doped FETs that can be reconfigured to operate in multiple
modes [5], [6], photodiodes using a potential barrier to block
the flow of majority carriers [7], and quantum cascade lasers
[8]. In all these devices charge carriers are either contained-
in or controllably-released-from engineered quantum wells. In
general, band engineering requires the use of different ma-
terials forming heterojunctions like MoS2/MoTe2, Ge/SiGe,
GaAs/AlGaAs, InAs/GaSb etc.

We revisit the modeling of charge transport across a het-
erojunction focusing on the mass discontinuity of the carriers.
The wave vector mismatch at the mass discontinuity leads
to reflections of the carrier waves and the impact can be
significant [9]. Thus, it is well recognized that the mass
mismatch needs to be taken into account in numerical sim-
ulations. We report here on the convergence behavior of two
different discretization schemes for the Hamiltonian with a
mass discontinuity. The results reported here are part of the
development of a Python NEGF module by the authors, which
will be distributed publicly (details reported elsewhere).

II. ESSENTIAL EQUATIONS

In a ballistic device, the solution ψ(x) to the one-particle
Schrödinger equation Ĥψ = Eψ describes electrons flowing
through a conducting channel. When the carrier effective mass
is position-dependent, the Hamiltonian operator is given by

Ĥψ(x) = −ℏ2

2

d

dx

(
1

m(x)

dψ

dx

)
+ U(x)ψ(x), (1)

where m(x) and U(x) are the effective mass and the potential
energy at x. The first step to compute an approximation of
ψ or to use the NEGF method is to employ a discretization
scheme. In this case, a square matrix H represents the operator
Ĥ within the channel. The explicit form of H is discussed in
the following section.

One of the main advantages of the NEGF method is
that influences of the contacts are modelled by self-energy
matrices, Σs and Σd, that have the same size as H . Here
sub-indexes s and d indicate quantities related to left- and
right-sided contacts, respectively. The retarded matrix Green
function is computed as

G(E) = [(E + jη)I −H − Σs(E)− Σd(E)]
−1
, (2)



where I is the identity matrix, j is the imaginary unit, and η
is an extremely small positive number. All the quantities of
interest can be derived from G. In particular, we can obtain
the transmission coefficient

T (E) = Tr(Γs(E)Ad(E)), (3)

and the local density of states

LDOS(xi, E) =
As,ii(E) +Ad,ii(E)

2π
, (4)

where Γs/d = −j
[
Σs/d − Σ†

s/d

]
and As/d = G†Γs/dG. The

explicit form of Σs/d used in this work is the same as in [5].
From the expressions above, the device density matrix, the
charge density and the electric current can be computed.

III. DISCRETIZATION OF THE HAMILTONIAN

In a discrete version of the Schrödinger equation, the
vector ψ = [ψ(x1), ψ(x2), . . . , ψ(xN )]T represents the wave
function, where {x1, x2, . . . , xN} is a set of N positions. We
consider a uniform discretization in which a = xi+1 − xi
is constant. In addition to this, the Hamiltonian operator in
Eq. (1) translates into a square matrix H such that Hψ ≈
[Ĥψ(x1), Ĥψ(x2), . . . , Ĥψ(xN )]T . To obtain H , some kind
of finite difference formula must be applied to the kinetic
energy term d

dx (ψ
′(x)/m(x)). Applying such formulas to the

expansion

−m′(x)

m2(x)
ψ′(x) +

1

m(x)
ψ′′(x)

of this term has been said to lead to convergence issues [10].
The behavior of m′(x) at a mass step is possibly the main
reason. A more reliable approach is to first discretize d

dxϕ(x),
where ϕ(x) = ψ′(x)/m(x), and then discretize the resulting
terms. Throughout this text, we use and compare two different
discretization schemes obtained in this way and denoted by S1

and S2.
Both schemes give rise to a tridiagonal Hamiltonian matrix,

whose diagonal and off-diagonal elements are given by

Hii = t−i + t+i + Ui and (5)

Hi,i±1 = −t±i , (6)

respectively, with i = 1, 2, . . . , N . The hopping parameters
are defined as

t±i =
ℏ2

2a2m±
i

, (7)

where the mass average m±
i is specific of each scheme and

depends on m(xi) and m(xi±1). For S1, the mass average is
given by

m±
i =

mi +mi±1

2
. (8)

This is the discretization scheme commonly employed to solve
the Schrödinger equation [11], [12] or to compute NEGFs [7],
[13]. In this brief, we introduce a new discretization scheme,
S2, in which

m±
i =

[
1

2

(
1

mi
+

1

mi±1

)]−1

. (9)

Besides being deduced in a similar way, these schemes lead to
very different values of the elements in Eqs. (5) and (6) when
mi/mi+1 ≫ 1 or mi/mi+1 ≪ 1. Therefore, it is interesting
to compare how this pair of schemes behave when there are
large mass steps in the channel.

The scheme S1 related to Eq. (8) results from using a central
finite-difference formula twice followed by a variable change
[10]. In the first step, we find

dϕ

dx

∣∣∣
xi

≈ ϕ(xi + a)− ϕ(xi − a)

2a
,

where each term is given by

ϕ(xi ± a) = ± 1

m(xi ± a)

(
ψ(xi ± 2a)− ψ(xi)

2a

)
.

Making the transformation 2a→ a and rearranging the terms,
we get

dϕ

dx

∣∣∣
xi

≈ 1

(2a)2

(
ψ(xi + a)− ψ(xi)

m(xi + a/2)
− ψ(xi)− ψ(xi − a)

m(xi − a/2)

)
.

The mass m±
i in Eq. (8) approximates m(xi±a/2) by means

of linear interpolation.
On the other hand, the scheme S2 related to Eq. (9) results

from the average of forward and backward finite-difference
formulas:

dϕ

dx

∣∣∣
xi

≈ ϕ(xi + a)− ϕ(xi)

a

and
dϕ

dx

∣∣∣
xi

≈ ϕ(xi)− ϕ(xi − a)

a
.

Each of the above expressions is again discretized using
such formulas. In this step, the choice between forward and
backward rules is made to ensure that H is a hermitian matrix.
As a result, we get the average of inverses as the mass m±

i in
Eq. (9).

Another possible discretization scheme is described in [14]
(See Eq. (7.1.5) and the following discussion). The proposed
scheme produces a Hamiltonian matrix analogous to that of
S2. However, it is restricted to abrupt mass steps. On top of
that, a position point must be located at the interface where
the mass changes.

IV. ANALYTIC CASE STUDY

Eq. (1) implies that both ψ and 1/m × dψ/dx need to
remain continuous at a mass discontinuity. With this boundary
condition the transmission coefficient for a piecewise constant
conduction band energy Ei can be calculated analytically. The
index i indicates the different “pieces” of the band profile. A
quantum well leads to transcendent equations for the electron
wave numbers:

ki =
√
2mi(E − Ei)/ℏ2 (10)

that need to be solved to find the “discrete” well states, see,
e.g., section 2.7.2 in [10]. Such simplified band profiles are
very useful to validate numerical algorithms, which then can
be applied to more realistic heterojunctions.



Here, we use a wall (or sink) in the conduction band
with mass discontinuities at the edges instead of a well. The
transmission T (E) through a double barrier (a well) can be
deduced from the transmission of a single one. A potential
wall/sink can also serve as a zero-order transistor model. The
T (E) through a potential barrier can be solved in closed form
and is described in [15]. The conduction band Ei consists of
three “pieces”: two access regions denoted source, i = s, and
drain, i = d, and a connecting wire of length Lch denoted
channel, i = ch. The resulting transmission coefficient reads:

T =
b

1
4 (1 + b)2 + 1

4a2 [b2 − (1 + b2)a2 + a4] sin2(kchLch)
(11)

with
M =

ms

mch
, a =M

kch
ks
, b =

kd
ks

. (12)

To validate different implementation schemes for mass
discontinuities, we should choose (unrealistically) large val-
ues for the mass ratio M and look for quantities that are
especially sensitive. Such a quantity is the minimum transition
coefficient:

Tmin(E) =
4a2b

(a2 + b)2
. (13)

The difference between the analytic and numeric results for
Tmin will be used to benchmark the two different implemen-
tation schemes described in Sec. III. More precisely, a single
valued parameter T (Emin) with

Emin ≈ Ech +
9π2

4L2
ch

ℏ2

2mch
(14)

(the approximative energy of the first transmission minimum,
ca. 7% error) will be computed. In the benchmark example,
the values in Tab. I are used.

TABLE I
POTENTIAL BARRIER PARAMETERS FOR BENCHMARKING DIFFERENT

DISCRETIZATION SCHEMES OF THE HAMILTONIAN.

ms/d mch Es/d Ech Lch Emin − Ech

Mmch 0.05me -0.4 eV +0.3 eV 30nm 19meV

V. RESULTS

For a given step-like potential and effective mass profile
along the device channel, Eq. (1) was solved using Pyhton’s
numpy module. From G(E) the transmission coefficient and
the local DOS are obtained. The developed solution code runs
on a common computer notebook in a few minutes. Details of
the solution code will be reported elsewhere.

Fig. 1 displays the LDOS and transmission coefficient of a
device with a barrier of height ∆E = 0.7 eV and M = 2.
The LDOS is measured in number of states per energy and the
color scale is adjusted to the LDOS averaged over the device.
The result shows that the differences in electrostatic potential
and effective masses between the source/drain and the channel
regions generate harmonic states in the channel, similar to
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Fig. 1. (a) Local Density of States for M = 2. (b) Comparison between
the analytical solution (line) with its minimal curve (dashed) and the numeric
solution (open circles) obtained for the discretization scheme S2.
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Fig. 2. Comparison of the two discretization schemes S1 and S2: (a) Effective
mass at the transition point with increasing M computed using Eq. (8) and
Eq. (9) for S1 and S2, respectively, (b) M -dependence of the transmission
coefficient T (Emin) at the energy of the first minima obtained from the
analytic curve, Emin−Ech ≈ 16.7meV, (c) Numeric convergence of Emin

with the number of spatial points N at M = 8, (d) Numeric convergence of
T (Emin) with the number of spatial points N at M = 8.

a potential well. The transmission of charge carriers with
energies below 0.3 eV is strongly suppressed by the 30 nm
barrier. Electrons with energies above 0.3 eV are crossing the
channel. The transmission coefficient oscillates between 1 and
Tmin. The numerical solution fits the analytical one validating
the here newly proposed discretization scheme S2.

Results for the two discretization schemes S1 and S2 are
compared in Fig. 2. The effective masses in both schemes
differ significantly. The S1 scheme increases the effective mass
linearly with M , while in S2 the effective mass approaches
2mch. Regardless these differences in m±

i , both schemes
predict the first transmission minima correctly. However, the
numeric convergence differ considerably. The convergence of
Emin and T with higher spatial resolution is faster in S1 and
S2, respectively.

The transmission of charge carriers in a planar band can be
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Fig. 3. Charge carrier transmission in a planar band with mass discontinuity:
LDOS (a) and transmission (b) with no mass change M = 1, LDOS (c) and
transmission (d) with abrupt mass change M = 20, LDOS (e) and trans-
mission (f) for a smooth change of mass to M = 20 throughout the device
with constant increase of mass over different intervals ranging from 0.2nm to
20nm. The mass increases linearly in the x region 20 nm± interval/2 from
m = 0.05me to me. The mass profile along the device channel is indicated
in (e) as dashed line. The color scale for the LDOS has been changed in (e)
to highlight the energy and position dependence. Values above 1 eV−1 are
depicted as white.

significantly reduced by mass discontinuities. Fig. 3 displays
the LDOS and T (E) for the ideal case (a,b), for an abrupt
mass change in the middle of a channel (c,d) and for a
smooth mass change within a finite transition region (e,f).
The transmission coefficient for an abrupt mass change can
be computed analytically Tmax = 4

√
M/(1 +

√
M)2 and is

reduced from T (E,M = 1) = 1 to T (E,M = 20) = 0.6. A
smooth transition to M = 20 over an 20 nm interval increases
the transmission again to nearly one, i.e., T (E = 0.1meV) =
0.97.

VI. CONCLUSION

At a heterojunction both the charge carrier wave function
and its derivative normalized to the effective mass need
to remain continuous. The device Hamiltonian has to be
discretized correspondingly. The resulting finite difference
schemes exhibit very different convergence behaviors. Al-
though the choice of the finite difference method does not

matter for high-resolution spatial sampling, significant dif-
ferences are obtained for finite step sizes. The transmission
coefficient might be over- or underestimated depending on the
charge carrier energy. This is an important observation since
high-resolution sampling comes at high computational cost.
In this tutorial brief we gave an overview on how to derive
and validate possible finite difference equations. The work
is part of a continuous effort to implement an educational
module for the Python programming language that enables
the simulation of electron devices for given band profiles. As
an application example, we showed that smoothing an abrupt
mass discontinuity leads to largely improved transmission
coefficients.
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